CO adsorption on the GaPd(111) surface: a comparative DFT study using different functionals

نویسندگان

  • S. Alarcón Villaseca
  • S. V. Levchenko
چکیده

CO adsorption on the polar (% 1% 1% 1) surface of the intermetallic compound GaPd is examined within ab initio methods using an all-electron full-potential electronic structure approach. Comparison between the PW-LDA, GGA-PBE, GGA-RPBE, GGA-revPBE, and hybrid HSE06 functionals is considered through bulk, clean surface and CO adsorption calculations. The choice of the functional is found to have a strong influence in the description of single CO adsorption on the surface model proposed in literature. As expected from the so called ‘‘CO adsorption puzzle’’, differences in the obtained results demonstrate that classic LDA and PBE functionals can only partially describe the complex CO adsorption bonding scenario on a surface containing transition metal elements (in this case Pd atoms), where the energies of the substrate–adsorbate electronic states are shifted, yielding important differences in the absolute values of the adsorption energies, vibrational frequencies and surface–adsorbate interaction. So far the hybrid functional HSE06 correctly retrieves all the tendencies observed experimentally as confirmed by comparing our first-principles results to experimental findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular adsorption at Pt(111). How accurate are DFT functionals?

Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), ...

متن کامل

Adsorption of CO on Ni3Al(111): A combined theoretical and experimental study

Adsorption of CO on metal atoms surfaces is one of the most thoroughly studied adsorption systems. It is a prototypical model system for investigating molecular adsorption, and of fundamental importance in many catalytic reactions. However, real catalysts often consists of several components, and offer geometric and electronic properties different from the elemental surfaces. The Ni3Al(111) sur...

متن کامل

CO Adsorption on the V (100) Surface: A Density Functional Study

Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...

متن کامل

Insight into the Adsorption of Water on the Clean CeO2(111) Surface with van der Waals and Hybrid Density Functionals

Understanding the interaction between water and ceria surfaces is crucial in many catalytic applications. For the clean CeO2(111) surface, density functional theory (DFT) calculations using different generalized gradient approximations (GGAs) to the exchange-correlation functional and the DFT(GGA)+U method have found that the most stable configuration is on top of a surface cerium atom. However...

متن کامل

The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study

In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016